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Is Exploring the Moon a Political Decision? 

•  Successive American presidents have reshaped 
major aspects of the nation’s space program. 

•  Each administration’s vision seems to involve the 
perceived utility of space exploration to broader 
national goals: 
–  Scientific, Technological and Geo-Political 

Leadership, 
–  National Security,  
–  Support for Industry, Academia, and Education 

and the terrestrial economy they feed. 
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Is Exploring the Moon a Political Decision? 

•  The most recent presidential policy may stem from 
objectives for human lunar exploration that: 
–  Were not sufficiently clear, quantitative, or 

compelling 
–  Did not adequately link human lunar exploration to 

overarching national needs. 
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Is Exploring the Moon a Political Decision? 

•  Alternative destinations such as Near-Earth Objects, 
Martian moons and Mars may 
–  Drive longer-term technological development, 
–  Inspire STEM education in the same general way 

as before 
–  Maybe give us the ability to mitigate an NEO on a 

collision course with Earth, and 
–  Put off the difficult job of landing and returning 

from a non-terrestrial gravity well. 

Kurt Sacksteder, NASA Glenn Research Center, Cleveland, OH   kurt.sacksteder@nasa.gov 4 



National Aeronautics and Space Administration!

www.nasa.gov 

Is Exploring the Moon a Political Decision? 

•  So are there still good reasons to send robots or 
humans to the moon? 
–  Science: Lunar, Terrestrial, Solar System, 

Physical and Life Science 
–  Demonstrate (close by) living away from Earth, 

including ISRU, radiation shielding, etc. 
–  Build very large and very cool robots 
–  Build a new launch vehicle system quickly 
–  Establish a human backup records cache 

•  The constituencies behind these causes have not yet 
prevailed. 
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Any Other Reason for Lunar Exploration? 

•  The Lunar Reconnaissance Orbiter and the LCROS 
probes are indicating widespread sources of H20/OH 
and possibly other volatile species 
–  Within permanently shadowed craters 
–  Outside craters in often-dark locations 

•  Are these resources real? How plentiful? 
•  Are they harvestable? 
•  Could they be converted to usable mission 

consumables? 
•  Could such consumables be economically useful on 

the moon or elsewhere? 
•  Would anyone care? 
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Resource-Based Lunar Exploration 
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Updated Economic Study: Lunar-Produced Oxygen, Water and 
Propellants for: LEO, GSO, L1, NEO and Mars Exploration. 

Initial Robotic Ground Truthing Mission to High-Value, Low-
Risk Volatile Resources Site 

Enable low-cost robotic missions with simple survival-based 
lunar infrastructure 

Resource Mapping Campaign involving “Low-Cost” robotic 
assets with potential for broad participation  

Public and Private Assessment of the usefulness of further 
investment in Robotic or Human Lunar Exploration 

Public Awareness and Support 
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Thermal Wadis Concept 
•  Thermal Wadis use modified regolith as a thermal mass to: 

•  Store solar energy for nighttime use and/or  
•  Function as a radiator for daytime heat rejection 
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Thermal Performance Simulation 
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Properties Native regolith Basalt Rock 
Thermal diffusivity 6.6 x 10-9 m2/s 8.7 x 10-7 m2/s 

Density 1800 kg/m3 3000 kg/m3 
Specific heat 840 J/(kg•K) 800 J/(kg•K) 

Thermal conductivity 0.01 W/(m•K) 2.1 W/(m•K) 

•  Thermal properties of native regolith and modified 
regolith 

•  Heat conduction with surface radiative boundary 
conditions, bounded on bottom/sides with native 
regolith properties. 

•  Solar illumination models specific to location 
•  Provisions for steering sunlight and limiting cooling 

radiative emissions to space 
•  Provisions for providing heat to lunar surface assets 
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Thermal Performance Simulations 
Equatorial Surface Temperatures 

 

T(K) 

t(hr) 

Tmin,regolith 
= 117 K 

Tmax,regolith 
= 387 K 

Surface Temperature of Native Regolith 

 

q/qmax 

t(hr) 
Solar Illumination of the Lunar 
Surface: Equatorial 

 

Tmin, nominal 
Tmin, regolith 

t(hr) 

T(K) 

Tmin 
= 247 K 

Tmax 
= 388 K 

Thermal Wadis store solar energy 
flux in thermal mass then provide 
nighttime thermal protection  
• Modified regolith: α = Basalt Rock 
• Sun-tracking reflector (1300W/m2) 
• Night-time heat-loss shield 
• Robotic rover heating (25W/m2) 
• Surface Temperature > 247K Surface Temperature of  50cm deep Wadi 
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Thermal Wadi Performance 
Shackleton Crater Rim – Surface Temperatures 

Solar illumination near the south 
pole (from H.J. Fincannon) 
• Annual cycle provides many months 
without eclipse 
• Longest eclipse is 52 hours 

 

T(K) 

t(hr) 

Tmin= 273 K 

Tmax= 320 K 

Ttouch 

Tmin, regolith 
Tmin, nominal 

Telectronic 

Thermal Wadis can be configured 
to provide a continuous, moderate 
temperature heat source 
• Sun Tracking, Heat-Loss Shield, 
Rover Heating 
• Modest temperatures achieved with 
managed solar flux input 
• Performance margins  
• Most forgiving location for wadi 
demonstration 

 

t(hr) t(hr) 

q/qmax q/qmax 
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Thermal Wadi Performance 
Thermal Animation of Schematic Rover on Equatorial Wadi 
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Thermal Wadi Performance 
Effect of Lunar Dust Layer on Wadi Surface Temperature 
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0 mm (no dust) 
1 mm 
2 mm 
5 mm 

Dust layer thickness 

•  Dust layer of small thickness mitigates thermal mass 
surface temperature swing 

•  Dust may actually be beneficial! 
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Thermal Property Measurements 
Informing Thermal Mass Production Methods 

Native Regolith 
Apollo Measurements 

•  Measurements of sintered and 
melted JSC-1AF, produced using 
various process conditions 

•  Instrument:  Laser-Flash Thermal 
Diffusivity System 
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Thermal Property Measurements 
1150 C Sample, Processed in Argon Atmosphere 

Scanning Electron Microscopy 

Elemental 
Constituents per 
Energy Dispersive 
Spectroscopy 

Crystalline Phases via 
X-Ray Diffraction: 
•  Hematite (Fe2O3) 
•  Anorthite (CaAl2Si2O8) 
•  Diopside (MgCaSi2O6) 
•  Fosterite (MgSiO4) 
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Thermal Property Measurements 
Thermal Radiation/Emissivity Changes during Processing 

•  Data informs thermal mass production energy requirements 
•  Values calculated using data from a 137 GHz Heterodyne Dual-

Receiver Millimeter Wave Radiometer Interferometer 
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Thermal Wadi Applications 
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Thermal Mass Manufacturing 
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Lightweight 
Solar 
Concentrators 

In-Situ Vitrification/
Joule heating 

Reduction of Regolith/ 
O2 Production 
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Regolith Wadi 

Bi-Modal Rover 
Courtesy of Heather Jones, Carnegie-Mellon University 

Lunar Day 
•  Radiator rejects heat to 

space 
•  Rover insulated from high 

temperature regolith 

Lunar Night 
•  Rover absorbs heat from 

Wadi 
•  Reflector retains heat 

from robot and Wadi 

Multi-Layer 
Insulation 
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Additional Applications of Thermal Wadis 
•  A thermal mass can be 

configured in an artificial 
“PSR” to serve as a daytime 
heat sink. 

•  Thermal mass pairs can be 
configured as high-temp/ 
low-temp reservoirs, joined 
with a Sterling generator for 
electrical power. 

Kurt Sacksteder, NASA Glenn Research Center, Cleveland, OH   kurt.sacksteder@nasa.gov 20 

Insulating Regolith 
Cooled Thermal Mass 
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Current Work 

•  Developing joint small-rover/thermal wadi thermal 
modeling to extend feasibility study 

•  Detailed model of solar reflector/radiation shield 
•  Prepare hardware demonstration of solar 

concentrator based thermal mass manufacturing 
•  Prepare joule-heating concept for thermal mass 

manufacturing 
•  Extending thermal property measurements to include 

additional regolith simulants 
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Resource Characterization: 
Paving the Way for Humans to Return to the Moon 

•  Robotic prospectors, based from thermal 
wadis, identify resource concentrations & sites 

•  Promising sites are selected for near-term 
lunar resource extraction demonstrations 

•  Oxygen from regolith 
•  Water and other Volatiles 

•  ISRU technology demonstrators, operated at 
thermal wadis, further reduce cost and 
performance risks 

•  Architectural and engineering studies evaluate 
the economic potential of lunar resources 

•  Humans return to the Moon with clear value 
driven goals:  Site location, work objectives, 
necessary infrastructure, tools and instruments. 
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