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What Is High Fidelity?
• Answer dependent on application

• ISRU oxygen production 
• Correct fraction of oxygen producing mineral
• Correct fraction of interfering materials

• Adhesion to spacecraft components
• Correct size and shape distributions
• Correct surface chemistry
• Correct electrostatic properties

• Lunar environmental changes dust properties
• No adsorbed water, carbon dioxide on surfaces
• Lunar dust contains implanted solar wind
• Lunar dust subjected to solar and galactic radiation
• Lunar dust subjected to meteoroid bombardment

• How high fidelity is high enough?
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Lunar Minerals in High Fidelity Simulants
• Silicate minerals/glass make up to 90% regolith volume

• Pyroxene - (CaFeMg)2Si12O6
• Plagioclase feldspar – (CaNa)(AlSi)4O8
• Olivine - (MgFe)2SiO4

• Oxide minerals make up to 20% volume
• Ilmenite – (MgFe)TiO3
• Spinel – FeCr2O4, Fe2TiO4, FeAl2O4, MgTiO4
• Armalcolite – (MgFe)Ti2O5

• Low abundance of native metals
• Fe, Ni, Co

• Most sulfur contained in single mineral
• Troilite – FeS

• Traces of many other minerals (∼100)
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Minerals Absent from High Fidelity Simulants

• Rare on moon (though common on earth)
• Potassium feldspar - KAlSi3O8

• Silica – SiO2

• Absent on moon (because they contain water)
• Clays
• Micas
• Amphiboles

Clay structure from NASA SSC on www7430.nrlssc
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Lunar Agglutinate Formation
• Meteoroid strikes on the surface

• Hottest zone underneath impact melts rock together
• Adsorbed H, He from solar wind escape
• Oxygen from rock vaporizes and escapes
• Iron is reduced, vaporizes and re-deposits
• Mineral grains structure shocked
• Minerals melted into glass

• Glass flows down into regolith and glues grains together
• Forms frothy agglutinates

• Zone beneath hot zone feels pressure
• Fractures rock into small, sharp particles 

• More agglutinates in “mature” soils

Union College website

Figure from L. Taylor presentation at Lunar Simulant Materials Workshop, 
Jan 2005.
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Properties of Agglutinates
• Properties

• Part mineral, part glass, nanophase Fe°
• Very high surface area, low density
• Mechanically fragile
• Irregular surfaces

• Implications
• Will break up when mechanically worked

• May need to be replaced regularly in mechanical testing
• Shape will effect adhesion

• Few points of contact will lower van der Waals adhesion
• Jagged edges may hook into fabrics

• Synthetic agglutinates being made
• USGS, Orbitec, PPI

Lunar agglutinate image 
from Union College on 

www.Union.edu
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Properties of Nanophase Iron
• Fe° deposited during agglutination

• Much in glassy rinds covering surface
• Some deposited as metal on surfaces

• Implications
• Fe° affects magnetic properties

• Nanophase superparamagnetic
• Larger particles ferromagnetic
• Good microwave absorber

• Surface Fe° on nanoparticles toxic?
• Enter bloodstream through lungs

• Synthetic nanophase Fe° being fabricated
• GRC, Orbitec, USGS
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Properties of Lunar Sulfur
• Troilite (FeS) reactive mineral ∼ 1% all lunar regolith

• FeS rare in terrestrial surface rock
• Must be added to simulants

• FeS can react with ISRU processes
• H2S and SO2 production likely
• Must be removed from breathable O2

• FeS can poison catalytic surfaces
• Fisher-Tropsch catalysts for reforming CH4
• Sulfur compounds may poison fuel cell catalysts
• Nobel metals poisoned

• FeS may be a resource
• Hayes (UM) has proposed nanophase FeS to filter toxic metals (As, 

Cd) from water
• NiS or other metal sulfides in regolith?
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Activation Definitions
• Activated Surfaces defined:  

• A relatively large number of highly reactive surface atoms
• Types of reactive surface sites

• Free radicals – atoms with unpaired electrons
• Dangling bonds – unsatisfied valence shell bonding
• Crystal defects – create highly unstable, strained bonds

• Activation energy
• Energy difference between ground state and excited state
• Energy to remove electrons
• Energy to displace atoms from equilibrium lattice positions

• Passivation
• The relaxation of excited states into ground states
• Includes reactions with foreign bodies

http://images.google.com/imgres?imgurl=http://www.einlightred.tue.nl/projects/euv/PhotoionizationProcess.jpg&imgrefurl=http://www.einlightred.tue.nl/projects/euv/index_en.html&h=184&w=235&sz=13&hl=en&start=2&tbnid=dHngzmVBgIxyeM:&tbnh=85&tbnw=109&prev=/images%3Fq%3Dphotoionization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG
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Space Radiation at the Lunar Surface
• About 5.8 eV will eject an e- from a mineral surface
• Mineral bonds are broken by the input of 3-9 eV
• Minerals have about 1015 surface atoms/cm2 (*)

10-6

*

Figure derived from J.W. Wilson, et al., NASA Ref Pub 1257 (1991).
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Environment Activates Lunar Regolith
• Energetic solar particles and galactic cosmic rays

• Hard UV, x-rays, and γ-rays
• Implantation of H+, He2+,…
• Sputtering of atoms off of surface

• Micrometeoroid strike  surface
• Fractures regolith, shocking structures 

• Large thermal cycles
• Equatorial regions range 100 – 400 K (-280 to 260 °F)
• Polar range 210 – 230 K  (permanently shadowed craters 40 K?) 

• Ultra-high vacuum (10-12 – 10-14 Torr)
• Each surface atom hit once a day by a gaseous atom

• On earth each surface atom hit 108 times per second
• Passivation of dangling bonds and defects is very slow

Figure from L. Taylor presentation at Lunar Simulant Materials Workshop, Jan 2005.
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Evidence for Activated Dust
• Grossman (1970) measured cohesion in sample 10065-33

• Porous and friable micro-breccia
• Fractured in 7×10-10 Torr vacuum
• Initial cohesion 800 dynes

• 4 min → 200 dynes
• 15 min → ∼ 0

• Pungent odor given off of lunar dust consistent with 
reactions with odorant receptors in nose
• From David Scott in the Apollo 15 Technical Debriefing

• “When you took the helmet off, you could smell the lunar dirt.  It 
smelled like – the nearest analogy I can think of is gunpowder.”

• Odor dissipated in a short time, consistent with 
passivation of by oxygen or water vapor
• Carlton Allen, Biological Effects of Lunar Dust Workshop (2005)

• “The gunpowder smell went away in a few hours.”
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Investigations into Simulant Activation
• Subject lunar simulants to surface activation processes:

• Fracture using high impact milling
• High energy RF plasma
• High energy ablation

• Multiple characterization techniques:
• SEM, TEM, HRTEM, SAED for physical structure
• Fluorescence and Raman (in situ) for chemical structure
• Quartz crystal microbalance, resistivity for in situ reactivity determination
• RGA analysis of implanted solar wind volatiles

• Physical and Chemical Reactivity Testing 
• Adhesion studies upon materials and coatings
• Abrasion characterization upon simple cleaning

Vacuum Abrasion Test (8-20-07)
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Lunar Dust Adhesion Belljar Capabilities

• High vacuum (10-8 Torr)
• Quantify residual gases

• In situ activation of dust
• Stirring/heating to drive off terrestrial 

volatiles
• Activation in oxidizing/reducing RF plasmas
• Sieving dust onto samples
• UV-Vis-IR irradiation

• Characterization of samples
• Absorptance
• Emittance to cold wall as low as 25 K
• Steady state temperatures vs/applied power
• Particle sizes/concentrations/mass on surface
• Adhesion to surfaces
• Abrasion testing (Taber test)
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Conclusions
• No high fidelity simulants widely available

• Not JSC-1, MLS-1, FJS-1…

• “High fidelity” definition application dependent
• ISRU requirements may differ from dust mitigation

• Minor constituents may have major effects
• Catalyst poisoning by traces of sulfur?
• Enhanced toxicity by surface iron?

• Lunar environment changes properties
• Activated surfaces affect adhesion, cohesion…
• Must test properties in the right environment
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