

CONFERENCE PROGRAM

Colorado School of Mines Golden, Colorado, USA June 3-6, 2025

Message

Welcome all to the Space Resources Roundtable Silver Jubilee! The Steering Committee of the 2025 SRR is happy to host the twenty-fifth edition of this conference that started back in 1999 with just a few enthusiasts in the space resources field. Given the record attendance, number of presentations and posters, and variety of topics at this meeting, there is plenty to celebrate the growth of this field in the past 25 years.

New studies, projects, and missions incorporating space resources objectives are being conducted for cislunar space, the Moon, Mars, and small bodies by government agencies around the world and the commercial space sector. This year alone, the Moon will be visited by several countries and companies demonstrating their landers, as well as deploying prospecting equipment. Interestingly, coinciding with our special anniversary, a spacecraft will be landing on the Moon and delivering several spaceresources payloads during this SRR!

In the legal and policy arena, the Artemis Accords now include more than 50 countries that have agreed to extract and utilize space resources to support safe and sustainable space exploration, while an initial draft set of recommended principles for space resource activities has been released by the UN COPUOS. Large aerospace companies and dozens of start-ups are now strategically positioning themselves in the various links of the space resources value chain. As current plans focus on the Moon as a destination for renewed robotic and human exploration, while paving the way to small bodies and the Red Planet, space resources are moving ever closer to enabling future exploration, expanding economic activity beyond our planet, and increasing societal benefits on Earth.

The diverse expertise of our rapidly growing community is needed more than ever to provide the scientific, technical, business, legal, and policy guidance to integrate space resources into public and private space initiatives in an efficient, economically sustainable, fair, and responsible way. As we reflect on the significant progress achieved in the last 25 years, we invite all meeting participants to actively contribute to this discussion to ensure an exciting and productive future in this field.

Angel Abbud-Madrid
 President & Chair SRR XXV, 2025

Sponsors

We would like to express our sincere appreciation to this year's SRR sponsors!

Program Schedule

TUESDAY, JUNE 3, 2025

7:30	Continental Breakfa	ast (CSM Ben Parker Student Center)	
8:00	Opening Remarks	Angel Abbud-Madrid, SRR President	
		Walter Copan, VPRTT, Colorado School of Mines	
	Session 1 – National Plans & Priorities Panel		
	Session Chair: Angel Abbu	d-Madrid, Colorado School of Mines	
8:20	Update on ISRU in NASA's Art	temis Program	
	Gerald Sanders, NASA Johnson	n Space Center	
8:30	The Lunar Surface Innovation	Consortium In-Situ Resource Utilization Group:	
	Status Update and Path Forw	ara niversity Applied Devsies Laboratory	
	Kan hibbills, Johns Hopkins O		
8:40	Space Resources in Luxembou	urg: Growing and Supporting European Expertise	
	Kathryn Hadler, European Spa	ce Resources Innovation Centre, Luxembourg	
8:50	Global Britain to Galactic Brit	ain: ISRU Capabilities Across the Value Chain	
	Joshua Rasera, Imperial Colleg	e, London, United Kingdom	
9.00	Introduction to New Develop	ments in Snace Resource Activities in Korea	
5.00	Kyeong Ja Kim, Korea Institute	of Geoscience and Mineral Resources. Korea	
9:10	ISRU Mission Objectives and	Technology Development at JAXA	
	Jun Shimada, Japan Aerospace	e Exploration Agency (JAXA)	
9:40		Coffee Break	
	Session 2 – Economic, Busir	ness, Legal, and Policy Considerations	
	Session Chair: Eric W	/ilson, CEO, The CPI Group, Inc.	
10:00	The Space Resources Fund: A	Proposal for Benefit Sharing and Investment in	
	Space Resource Utilisation		
	Ben McKeown, University of N	Iew South Wales, Australia	
10:20	Economic Evaluation of Lunar	· Mining Projects	
	Gaspard Smith-Vaniz, Universi	ity of Zurich, Switzerland	
10:40	The European Space Resource	es Innovation Center: A Unique Excellence Centre	
	with ISRU Commercialization	Programmes Dedicated to Early-Stage Ventures	
	Lari Cujko, European Space Re	sources Innovation Centre, Luxembourg	
11:00	The Lunar Development Coop	perative: A Proposed Solution for Avoiding the	
	I ragedy of the Commons	avalanment Cooperative	
	iviichaei Castie-iviilier, Luffar D		

11:20	Keeping Up with Space Law: The First Draft United Nations Principles on the Governance of Space Resource Activities Antonino Salmeri, Lunar Policy Platform	
11:40	Should We Care About the Moon Agreement? Melissa de Zwart, University of Adelaide, Australia	
12:00	Lunch (CSM Ben Parker Student Center)	
	Session 3 – Resource Prospecting & Exploration	
	Session Chair: David Karl, Technische Universitaet Berlin, Germany	
1:30	Optimizing Lunar Resource Extraction: Cut-Off Grades for Reserves Estimation Carlos Espejel, Space RS, Luxembourg	
1:50	Assessing Lunar Rare Earth Element Resources	
	Lazlo Keszthelyi, U.S. Geological Survey	
2:10	Making In Situ Resource Utilization (ISRU) a Reality on the Moon with the International Lunar Resource Prospecting Campaign (ILRPC): Prospecting, Science, and Planetary Protection Clive Neal, University of Notre Dame	
	Session 4 – Regolith Properties	
Session Chair: David Karl, Technische Universitaet Berlin, Germany		
	Session Chair: David Karl, Technische Universitaet Berlin, Germany	
2:30	Session Chair: David Karl, Technische Universitaet Berlin, Germany Data Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot Cone Penetrometer Ellie Zimmermann, Michigan Technological University	
2:30	Session Chair: David Karl, Technische Universitaet Berlin, GermanyData Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot ConePenetrometerEllie Zimmermann, Michigan Technological UniversitySPARTA: A Planetary Regolith Characterization Multitool for Space ResourceUtilization and Infrastructure DevelopmentJared M. Long-Fox, University of Central Florida	
2:30 2:50 3:10	Session Chair: David Karl, Technische Universitaet Berlin, Germany Data Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot Cone Penetrometer Ellie Zimmermann, Michigan Technological University SPARTA: A Planetary Regolith Characterization Multitool for Space Resource Utilization and Infrastructure Development Jared M. Long-Fox, University of Central Florida Coffee Break	
2:30 2:50 3:10 3:30	Session Chair: David Karl, Technische Universitaet Berlin, GermanyData Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot ConePenetrometerEllie Zimmermann, Michigan Technological UniversitySPARTA: A Planetary Regolith Characterization Multitool for Space ResourceUtilization and Infrastructure DevelopmentJared M. Long-Fox, University of Central FloridaCoffee BreakCompaction Dependent Thermal Properties of Icy Lunar Regolith in VacuumTravis Wavrunek, Michigan Technological University	
2:30 2:50 3:10 3:30 3:50	Session Chair: David Karl, Technische Universitaet Berlin, GermanyData Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot ConePenetrometerEllie Zimmermann, Michigan Technological UniversitySPARTA: A Planetary Regolith Characterization Multitool for Space ResourceUtilization and Infrastructure DevelopmentJared M. Long-Fox, University of Central FloridaCoffee BreakCompaction Dependent Thermal Properties of Icy Lunar Regolith in VacuumTravis Wavrunek, Michigan Technological UniversitySAMPLR – A Lunar Regolith Geophysical Evaluation Instrument and	
2:30 2:50 3:10 3:30 3:50	Session Chair: David Karl, Technische Universitaet Berlin, GermanyData Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot ConePenetrometerEllie Zimmermann, Michigan Technological UniversitySPARTA: A Planetary Regolith Characterization Multitool for Space ResourceUtilization and Infrastructure DevelopmentJared M. Long-Fox, University of Central FloridaCoffee BreakCompaction Dependent Thermal Properties of Icy Lunar Regolith in VacuumTravis Wavrunek, Michigan Technological UniversitySAMPLR – A Lunar Regolith Geophysical Evaluation Instrument and Development of an In Situ Calibration Method	
2:30 2:50 3:10 3:30 3:50	Session Chair: David Karl, Technische Universitaet Berlin, GermanyData Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot ConePenetrometerEllie Zimmermann, Michigan Technological UniversitySPARTA: A Planetary Regolith Characterization Multitool for Space ResourceUtilization and Infrastructure DevelopmentJared M. Long-Fox, University of Central FloridaCoffee BreakCompaction Dependent Thermal Properties of Icy Lunar Regolith in VacuumTravis Wavrunek, Michigan Technological UniversitySAMPLR – A Lunar Regolith Geophysical Evaluation Instrument andDevelopment of an In Situ Calibration MethodChristopher Dreyer, Colorado School of Mines	
2:30 2:50 3:10 3:30 3:50 4:10	Session Chair: David Karl, Technische Universitaet Berlin, GermanyData Analysis Results from Cryogenic Vacuum Testing of a Percussive Hot Cone Penetrometer Ellie Zimmermann, Michigan Technological UniversitySPARTA: A Planetary Regolith Characterization Multitool for Space Resource Utilization and Infrastructure Development Jared M. Long-Fox, University of Central FloridaCompaction Dependent Thermal Properties of Icy Lunar Regolith in Vacuum Travis Wavrunek, Michigan Technological UniversitySAMPLR – A Lunar Regolith Geophysical Evaluation Instrument and Development of an In Situ Calibration Method Christopher Dreyer, Colorado School of MinesRoundtable Discussion	

UNLOCKING THE Potential of space

MOTION CONTROL SOLUTIONS &

PLANETARY EXPLORATION SYSTEMS

SCAN THE OR CODE TO CONTACT US

HTTPS://WWW.BLUEORIGIN.COM/CONTACT-PRODUCT-SALES

Stay One Step Ahead with ON-ORBIT SERVICING

Unlock multi-mission capabilities with Astroscale U.S.'s proven on-orbit servicing.

LEXI

APS-R

The American-made, multi-mission GEO servicer

The Astroscale U.S. Refueler, built for the United States Space Force (USSF)

Stroscale

Safe and sustainable development of space for the benefit of future generations.

WE PROVIDE

SPACE DOMAIN AWARENESS and INSPECTION

On-demand, non-Earth imaging for enhanced visibility of the GEO orbital arc with our up-close inspection, long range characterization, and broad area search capabilities.

MANEUVERING and MAINTENANCE

Station-keeping, propellant and supply replenishment, in-space repair, or maneuver augmentation to positions of advantage in GEO or through orbital transfer.

REMOVAL and DE-ORBIT SERVICES

Removing and de-orbiting debris that threaten satellites in space.

www.astroscale-us.com

WEDNESDAY, JUNE 4, 2025

7:30	Continental Breakfast (CSM Ben Parker Student Center)
8:00	 LESSONS LEARNED: RECENT SPACE RESOURCES MISSIONS PANEL Benjamin Bussey, Intuitive Machines Hunter Williams, Lunar Outpost Isabel King, Honeybee Robotics Demyan Lantukh, AstroForge Panel Chair: George Sowers, Colorado School of Mines
	Session 5 – Regolith Excavation
	Session Chair: Frankie Zhu, Colorado School of Mines
9:00	LISTER Pneumatic Regolith Excavation at Mare Crisium: Preliminary Drilling Report from Blue Ghost Mission 1 Luke Sanasarian, Honeybee Robotics
9:20	Lunar Demonstration of PlanetVac: A Sample Acquisition and Delivery System for Instruments and Sample Return Zachary Fitzgerald, Honeybee Robotics
9:40	Excavation and Driving Performance of the PRIMROSE Rover during the Break the Ice Lunar Challenge Marcello Guadagno, Michigan Technological University
10:00	Experimental Results for the Compaction and Consolidation of Lunar Regolith Containing Discrete Water Ice in 1 Atm Pressure – A Reference for Lunar Tests Andrew Hazelton, Interstellar Mapping
10:20	Coffee Break
	Session 6 – Regolith Handling and Conveyance
	Session Chair: Christopher Dreyer, Colorado School of Mines
10:40	Advancements in Vibrational Segregation for Particle Size Classification Joshua Rasera, Imperial College, London, United Kingdom
11:00	Three-Dimensional Lunar Regolith Bucket Conveyor - LUREBUCON3D Piotr Kulinowski, AGH University of Krakow, Poland
11:20	The Australian Rover Challenge – Capability Building Through Competition David Harvey, The University of Adelaide, Australia
11:40	Regolith as a Service: Enabling End-To-End ISRU Operations Suleyman Salihler, Polimak Space

12:00	Lunch (CSM Ben Parker Student Center)
	Session 7 – Resource Extraction & Processing: Water & Volatiles
	Session Chair: Ian Jehn, Colorado School of Mines
1:20	Lunar Capillary Absorption Spectrometer (LuCAS) for Isotopic and Abundance
	Analysis of Lunar Volatiles
	Isabel King, Honeybee Robotics
1:40	STARMINE: A Full-Stack Lunar Propellant Production System
	David Aden, Starpath
2:00	Feasibility Study of Lunar ISRU Plants by Japanese Plant Engineering Company
	Yoshitoki Tanaka, JGC Corporation, Japan
2:20	Water Extraction Experiment Assuming Lunar Icy Regolith for In-Situ Resource
	Utilization on the Moon
	Suzuna Okamoto, Japan Aerospace Exploration Agency (JAXA), Japan
2:40	LUWEX Preliminary Results: Water Extraction, Capturing, and Purification from
	Lunar Icy Regolith Simulant
	Luca Kiewiet & Mateo Rejón López, German Aerospace Center, Germany
3:00	Coffee Break
	Session 8 – Resource Extraction & Processing: Oxygen
	Session Chair: Daniel Johnson, McMurchie Engineering
3:20	Gas Characterization during Thermal Treatment of Regolith Simulants in a
	Vacuum Environment
	Lucy Somervill, NASA Kennedy Space Center
3:40	Development of the Volatile Monitoring Oxygen Measurement System
	Deborah Essumang, NASA Kennedy Space Center
4:00	Key Findings and Path Forward from the Oxygen from Regolith (O2fR)
	Collaborative Systems Interface Study
	Paul Burke, Johns Hopkins University Applied Physics Laboratory
4:20	Roundtable Discussion
5:30-8:00	Banquet (Friedhoff Hall, Green Center)

Mining asteroids to supply the space economy.

X STARPATH

PROPELLANT FOR THE CISLUNAR ECONOMY, SOON.

we didn't spend much time on this ad, so we could spend more time on hardware.

looking for a dream to chase? -

hawthorne, california

starpath.space

THURSDAY, JUNE 5, 2025

7:30	Continental Breakfast (CSM Ben Parker Student Center)
8:00	 LOOKING AHEAD: UPCOMING SPACE RESOURCES MISSIONS PANEL Benjamin Bussey, Intuitive Machines Hunter Williams, Lunar Outpost Kevin Hubbard, Honeybee Robotics Daynan Crull, Karman+ Panel Chair: Angel Abbud-Madrid, Colorado School of Mines
	Session 9 – Resource Extraction & Processing: Oxygen and Metals
9:00	Integrated Solar Testing and TRL 6 Thermal Vacuum Test Results for a Fully Automated, Demonstration-Scale Carbothermal Reactor Brant White, Sierra Space
9:20	Ultra-High Vacuum Thermal and Carbothermal Reduction of Lunar Regolith Simulants for Oxygen and Construction Materials Shaspreet Kaur, Georgia Institute of Technology
9:40	Molten Regolith Electrolysis: Core Sample Analysis Annie Meier, NASA Kennedy Space Center
10:00	Coffee Break
10:20	Thermochemical Modeling of Molten Regolith Electrolysis Supporting Assessment of Metallic Product Compositions and Dynamic Oxide Properties Ben Schneiderman, Colorado School of Mines
10:40	On the Melting Behaviour of Metals Extracted From LHS-1 Regolith Simulant by Electrolysis in Molten Salt Timon Schild, European Space Resources Innovation Centre, Luxembourg
Session 10 – Cislunar and Lunar Surface Infrastructure	
44.00	Session Chair: George Sowers, Colorado School of Mines
11:00	Spectrum Management for Cislunar Space in the Era of Commercial Missions Arvind Aradhya, University of Colorado at Boulder
11:20	Preliminary Design of Intuitive Machines' Lunar Data Network Constellation Shaun Stewart, Intuitive Machines

11:40	Characterizing the Lunar Night Survival Challenge	
	Jacob Matthews, Zeno Power	
12:00	Towards a Self-Sustaining Lunar Base: An LSIC Community South Pole Master	
	Planning Approach	
	Jibu Abraham, Johns Hopkins University Applied Physics Laboratory	
12:20	Lunch (CSM Ben Parker Student Center)	
	Session 11 – Space Manufacturing	
	Session Chair: Joshua Rasera, Imperial College London, United Kingdom	
1:40	Solar On-Orbit Welder for Assembly, Repair, and Manufacturing	
	Alan Carter, Outward Technologies	
2:00	Mineralogical Characterization of Cast Lunar Regolith Simulants	
	Kyla Edison, Colorado School of Mines	
2:20	A Novel Approach to Increase Flowability of Planetary Regolith: Agglomeration	
	of Regolith Simulants for Powder-Based SRU Coatings on Metallic Surfaces via	
	Thermal Spraying	
	David Karl, Technische Universitaet Berlin, Germany	
2:40	Electron Beam Additive Manufacturing of Aluminum Derived from a Lunar	
	Highlands Regolith Simulant	
	Xavier Walls, Carleton University, Canada	
3:00	Coffee Break	
Session 12 – Space Construction I		
	Session Chair: Christopher Dreyer, Colorado School of Mines	
3:10	Vibratory Plate Compaction of BP-1 & LHS-1 Utilizing the Planetary Automated	
	Compaction Tool (PACT)	
	Evan Bell, NASA Kennedy Space Center	
3:30	Development of Landing Pads Using Regolith Blocks for Lunar Base Construction	
	Tatsuya Nukushina, National Institute of Technology, Tokuyama College, Japan	
3:50	Comparative Experimental Study of Terrestrial Compaction Methods on Lunar	
	Regolith Simulant	
	Christi LeCaptain, Michigan Technological University	
4:10	Roundtable Discussion	
5:00-7:00	Poster Session & Reception (CSM Ben Parker Student Center)	

FRIDAY, JUNE 6, 2025

7:30	Continental Breakfast (CSM Ben Parker Student Center)	
Session 13 – Space Construction II		
	Session Chair: Paul van Susante, Michigan Technological University	
8:00	Pressure-Sinkage Testing of Lunar Regolith Simulants in Ambient Pressure and Vacuum	
	Robert P. Mueller, NASA Kennedy Space Center	
8:20	Floatinator: A Low Gravity Simulator to Study Plume-Surface Interactions Travis Vazansky, Astrobotic Technology	
8:40	Low Gravity, High Stakes: Engineering Shake-Resistant Lunar Infrastructure Nerma Caluk, Skidmore, Owings & Merrill	
9:00	Using CAPSTONE's Mission Extension to Navigate the Future of Cislunar Technology Alec Forsman, Advanced Space	
	Session 14 – Mars Resources	
	Session Chair: Michael Hecht, Massachusetts Institute of Technology	
9:20	Climate Enhancing Resource Utilization Through CO ₂ Valorization on Mars Alex A. Fertig, Faraday Technology, Inc.	
9:40	Mars Oxygen and Methane System (MOMS) Michele Hollist, OxEon Energy, LLC	
10:00	Coffee Break	
10:20	De-Risking Production of Mars Return Propellant and Bootstrapping of Mars Agriculture Using Imported Ammonia George Lordos, Massachusetts Institute of Technology	
10:40	Harvesting Water Frost on Mars Using Focused Solar Radiation Isaac B. Smith, York University & Planetary Science Institute	
	Session 15 – Life Support Systems	
	Session Chair: Angel Abbud-Madrid, Colorado School of Mines	
11:00	Insights for Microbiomes in Regolith Based Agriculture (RBA) for Future Off World Habitats Based on Simulant Growth Experiments Laura Fackrell, Rhodium Scientific	
11:20	Living Off the Land: How ISRU Can Benefit Early Habitation Life Support Systems James Johnson, Colorado School of Mines	

Session 16 – Small Bodies & Beyond	
Session Chair: Angel Abbud-Madrid, Colorado School of Mines	
11:40	Mining Asteroids Versus Mining the Moon – Can You Have Your Cake and Eat it? Alex Ellery, Carleton University, Canada
12:00	Exploring Venus with Electrolysis: Atmospheric ISRU for Long Duration Aerial Missions Michael Hecht, Massachusetts Institute of Technology Haystack Observatory
12:20	Final Roundtable Discussion
1:00	ADJOURN

Andy Thomas Centre for Space Resources

Enabling Long Term Human Presence in Deep Space

The ATCSR combines expertise in off-Earth civil engineering, construction, robotics and AI, human-machine teaming, geology, agriculture, psychology and law.

The Centre is also home to a range of specialised experimental equipment and off-Earth test beds designed specifically for developing hardware and software destined for the Moon, Mars and beyond.

Multidisciplinary teams work across academia, industry and government to benefit humans in space while positively impacting life here on Earth.

set.adelaide.edu.au/atcsr atcsr@adelaide.edu.au

THE UNIVERSITY of ADELAIDE

:: interlune

Earth's future is in our orbit™

Learn more

JNAR AND

ANETARY S T I T U T E

POSTER PRESENTATIONS

Poster presentations will be divided into two sessions on Tuesday and Thursday evenings

	Tuesday, June 3, 2025 (5:00-7:00 PM)
	Location: Ballrooms D&E (CSM Ben Parker Student Center)
1	Detection of Light Elements on the Moon Surface Using Combined Techniques Inna Uwarowa, Lightigo Space, Luxembourg
2	Design of a Portable Hand-Held Centrifuge Capable of Separating Helium 3, Helium 4, and Other Gases Evan Karavolos, NTB Holdings LLC
3	A Review on the Comparison of Volatile Evolution from a Lunar Simulant Conducted at KIGAM Kyeong Ja Kim, Korea Institute of Geoscience and Mineral Resources, Korea
4	Soft Robotics for Space Applications: Technologies for Resource Utilization in Extreme Environments William Foster-Hall, The University of Adelaide, Australia
5	Test Stand for the Analysis of Excavation Forces in a Simulated Lunar Environment F. D. Gaertner, Michigan Technological University
6	Modeling Excavation Forces for Chain Driven Mechanisms with Buckets and Picks Marcello Guadagno, Michigan Technological University
7	AiSTRAEUS: Adaptive Integrated Space Trajectory Resource Allocation & Economic Utility System Santiago Gonzalez Aguado, AiSTRAEUS
8	In-Orbit and Re-Entry Qualification of Hardware, Electronics, and Software by Neurospace: Insights from Artemis 2 and TEC Mission Possible Campaigns Irene Selvanathan, Neurospace GmbH, Germany
9	Lunar Surface Characterization with the LUNASAT Sensor Network Barbra Sobhani, University of Colorado at Boulder
10	Optimizing a Megawatt Scale Lunar VSAT Installation Accounting for Self-Shading William Butler
11	A Path to Space-Based Power Transmission Using Space Resources: Additive Manufacturing Demonstration of a Cavity Magnetron for Solar Power Satellites Anjana Valsalan, Carleton University, Canada
12	Can We Build Nuclear-Electric Propulsion Systems from Lunar Resources? Alex Ellery, Carleton University, Canada

13	Update on Rechargeable Lithium Battery Development for Surviving the Lunar Night Brian Elliott, TDA Research, Inc.
14	Lunar-Pro: Lunar Unified Network for Assessing Resource-Driven Power Requirements and Operations Daria Opekunova, Colorado School of Mines
15	Lunar Power Grid: Dynamic Modeling of Grid Synchronization Using 3 KV AC and 1000 Hz Using Only Solar Power Generation Kenneth Liang, Orbital Mining Corporation
16	In-Situ Propellant Production Technology at NASA Kennedy Space Center Jessica Schwend, NASA Kennedy Space Center
17	Scaled-Up Usage of Solid-Oxide Electrolysis Cell (SOEC) Technology for Production of Rocket Fuel on the Moon Based on Experimentally Benchmarked Models David Dickson, Colorado School of Mines
18	Advancing ISRU Through Terrestrial Ice Resource Modeling: A Case Study from Galena Creek Rock Glacier Aaron Russell, Planetary Science Institute
19	Characterization and Discrete Element Modeling of Icy Lunar Regolith Under Compression Qiushi Chen, Clemson University
20	TRL 5 Testing Results & Design Advancements for the Mason Suite of Construction Tools Patrick Flowers, Redwire Space
21	Artemis Program In-Situ Resource Utilization Realities and a Critical New Role for Commercial Surface Crew John Culton, The University of Adelaide, Australia
22	Ecomine: A Bioregenerative Approach to Lunar Regolith Mining Naiara Doherty Garcia, Space Lab Technologies
23	Space Biomanufacturing: Intersection of Space Resource Utilization and Terrestrial Innovation Daven Northroup-Kuder, Rhodium Scientific
24	Use of the National Aeronautics and Space Administration's Global Reference Atmospheric Model Software for Modeling Gas Capture at the Martian Surface Jerry Drew, U.S. Army Command and General Staff College
25	Initial Assessment of In-Situ Resource Utilization for Human Missions to Titan Bill O'Hara, University of North Dakota & Explore Titan, Inc

	Thursday, June 5, 2025 (5:00-7:00 PM)
	Location: Ballrooms D&E (CSM Ben Parker Student Center)
1	Experimental Testing and Numerical Calibration of the Regolith Simulants Discrete Element Models
	Damian Pietrusiak, Wroclaw University of Science and Technology, Poland
2	Regolith Flowability in Lunar Gravity and Vacuum
	Anastasia Stepanova, Colorado School of Mines
3	Parabolic Flight Testing of Regolith Beneficiation for Lunar ISRU Daoru Han, Missouri University of Science and Technology
Λ	Mitigating Lupar Dust Hazards: Understanding Toxicity and Advancing Sustainable
4	Filtration
	Joshua Rasera, Imperial College London, United Kingdom
5	Evaluation of Heat Storage and Structural Materials Using Resin-Coated Regolith
	Yohei Shimizu , Resonac Corporation, Japan
6	Advancing Regolith Simulants for High-Temperature Applications
	Kyla Edison, Colorado School of Mines
7	Electron Beam Regolith Separation (EBRS) System for Lunar In-Situ Resource Utilization
	Annalise Cabra, University of Colorado at Boulder
8	Baseline Characterization of Moisture Adsorption and Thermal Variation in LHS-1E for
	Abigail Glover, The University of Central Florida
9	SSERVI Lunar Lab and Regolith Testbeds at NASA Ames Research Center
	Joseph Minafra, NASA Ames Research Center
10	Design and Research Work of the Spaceteam AGH Scientific Club on Lunar
	Technological and Transport Systems
11	Optimal Lunar ISRU Plant Deployment Under Oxygen Demand Uncertainty Using Model Predictive Control
	Kosuke Ikeya, Imperial College London, United Kingdom
12	25-kg Regolith Feed, O ₂ Extraction and Slag Extrusion Demonstration Payload
13	In Situ Extraction of Metals from Lunar Regolith
	Kamalesh Kumar Singh, Indian Institute of Technology (IIT), India
14	Progress on Aluminum Production from Lunar Regolith Simulants through Molten Salt
	Electrolysis
	succe of tega, missouri oniversity of science and recimology

15	Debris To Delta-V: Leveraging Man-Made Space Resources for Mobility
	Lee Steinke, CisLunar Industries
16	Additive Manufacturing of Reconfigurable Modules for Lunar In-Situ Resource
	Utilization
	Kevin Sankar, Carleton University, Canada
17	Tubular Truss Additive Manufacturing Lunar Utility Tower
	Jack Sorensen, Opterus Research and Development
18	A Novel Method of Heat Rejection and Storage Using Laser VMX Process on Lunar
	Regolith
	Ronald Hayes, ICON
19	The First Lunar Roads? Thermoplastic and Regolith Surface Improvement Vacuum
	Demonstration and Durability Testing
	G. Johnson, Michigan Technological University
20	Automated Site Preparation – ASPECT
	Christopher Dreyer, Colorado School of Mines
21	Site Preparation Tooling for Operations on Mobility Platforms (STOMP)
	Marco Gudino, NASA Kennedy Space Center
22	Deflection Characteristics of CSM-LHT-T Determined Through Standard and Trident
	Footpad Static Plate Testing
	Ian Jehn, Colorado School of Mines
23	Challenges of Utilizing Mars' Resources to Warm Mars
	Edwin Kite, University of Chicago
24	Sunthosizing Chemicals on the Mean and Mars Using Solid Oxide Electrolyzers
24	Neal P. Sullivan, Colorado School of Mines
25	Retrieving Subsurface Properties of Mars-Analog Glaciers with Drone-Based GPR
	Roberto Aguilar, Lunar and Planetary Laboratory, University of Arizona
26	Forging the Regolith Age: Scalable Mechanical and Chemical Asteroid Simulants for ISRU
	Innovation
	Luke Bowersox, Karman+
27	Compact Electrostatic Dust Analyzer (CEDA) for Measuring Dust Lofting from Asteroids
	Xu Wang, University of Colorado at Boulder
1	

Modular Rover Platform Designed for peak performance on both the Moon and Earth.

NEUROSPACE GmbH brings together a multidisciplinary team with deep expertise in systems engineering, artificial intelligence, robotics, and rugged hardware development. By leveraging machine learning and reinforcement learning, NEUROSPACE enhances the decision-making and adaptability of its robotic platforms, enabling them to operate collaboratively and efficiently in dynamic scenarios. At the heart of NEUROSPACE's innovation is the **HiveR platform**, a modular and flexible rover system designed for

NEUROSPACE GmbH | info@neurospace.de | +4930275816600

Lasercarb^{*} Oklahoma, Inc.

LASER CLADDED ANTI-ABRASION COATINGS FOR LUNAR ABRASIVE ENVIRONMENT

PRINCIPLE

The process consists of using the energy of a laser beam to melt the deposition powder on the part. A weld occurs between the deposit and the base metal.

ADVANTAGES

- Advanced technology: in-house developed coatings use cutting-edge materials science ensuring unmatched performance and reliability.
- Extreme durability/ enhanced equipment lifespan.
- Low heat affected zone/ High hardness of the applied material is not affected by laser cladding process.
- True metallurgical bond / no delamination.
- Large range of thickness deposit.

The second secon

INSISTENT GALACTIC OPERATIONZ is a pioneering space resources startup focused exclusively on the identification, capture, and extraction of water from asteroids located at the Oklahoma Air and Spaceport in Burns Flat, Oklahoma. Founded by Chief Dreamer Joshua Waters with the mission to *help harvest and cultivate the infinite resources in space, utilizing those resources to both further space exploration and benefit all life on Earth and in Space.* Our vision is to *unite humanity through space and its resources.*

"Pax Mundi, Pax Galactica"

Credits

Technical Steering Committee	Angel Abbud-Madrid, Colorado School of Mines Christopher Dreyer, Colorado School of Mines Leslie Gertsch, NASA Glenn Research Center/MS&T George Sowers, Colorado School of Mines Frankie Zhu, Colorado School of Mines
Session Chairs	Angel Abbud-Madrid, Colorado School of Mines Christopher Dreyer, Colorado School of Mines Michael Hecht, Massachusetts Institute of Technology Ian Jehn, Colorado School of Mines Daniel Johnson, McMurchie Engineering David Karl, Technische Universitaet Berlin, Germany Jared Long-Fox, University of Central Florida Joshua Rasera, Imperial College London, UK George Sowers, Colorado School of Mines Paul van Susante, Michigan Technological University Eric Wilson, The CPI Group, Inc. Frankie Zhu, Colorado School of Mines
Conference Organization and Logistics	Continuing and Professional Education Services (CPES) Melody Francisco, Director Julie Farquhar, Financial and Administrative Manager Marisa Hasty, Event Manager Stephanie Nelson, Event Manager

Space.Mines.edu